ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. G. Durbin, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 307-311
Technical Paper | Fusion Energy - Chamber Technology | doi.org/10.13182/FST03-A352
Articles are hosted by Taylor and Francis Online.
Turbulent liquid sheets have been proposed to protect solid structures in fusion power plants by absorbing damaging radiation. Establishing an experimental design database for this flow would therefore be valuable in various thick liquid protection schemes. The effect of initial conditions on the flow free-surface fluctuation was studied experimentally for vertical turbulent sheets of water issuing downwards from nozzles of thickness (small dimension) = 1 - 1.5 cm into ambient air. Sheets issuing from nozzles with both two- and three-dimensional fifth-order polynomial contractions with exit aspect ratios of 6.7 and 10 were investigated at Reynolds numbers ranging from 2 × 104 to 1 × 105. Mean velocity and turbulence intensity profiles were measured just upstream of the nozzle exit using laser-Doppler velocimetry to quantify initial conditions. Planar laser-induced fluorescence was used to visualize the free surface geometry of the liquid sheet in the near-field region up to 25 downstream of the nozzle exit. Fluctuations of the free surface, or surface ripple, are characterized by the standard deviation in the position of the gas/liquid interface.