ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. G. Durbin, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 307-311
Technical Paper | Fusion Energy - Chamber Technology | doi.org/10.13182/FST03-A352
Articles are hosted by Taylor and Francis Online.
Turbulent liquid sheets have been proposed to protect solid structures in fusion power plants by absorbing damaging radiation. Establishing an experimental design database for this flow would therefore be valuable in various thick liquid protection schemes. The effect of initial conditions on the flow free-surface fluctuation was studied experimentally for vertical turbulent sheets of water issuing downwards from nozzles of thickness (small dimension) = 1 - 1.5 cm into ambient air. Sheets issuing from nozzles with both two- and three-dimensional fifth-order polynomial contractions with exit aspect ratios of 6.7 and 10 were investigated at Reynolds numbers ranging from 2 × 104 to 1 × 105. Mean velocity and turbulence intensity profiles were measured just upstream of the nozzle exit using laser-Doppler velocimetry to quantify initial conditions. Planar laser-induced fluorescence was used to visualize the free surface geometry of the liquid sheet in the near-field region up to 25 downstream of the nozzle exit. Fluctuations of the free surface, or surface ripple, are characterized by the standard deviation in the position of the gas/liquid interface.