ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. F. Latkowski, W. R. Meier
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 300-304
Technical Paper | Fusion Energy - Advanced Designs | doi.org/10.13182/FST03-A351
Articles are hosted by Taylor and Francis Online.
The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) recently initiated an effort to reach an updated, self-consistent, integrated point design for a thick-liquid inertial fusion energy power plant. We call this design the Robust Point Design. As part of this effort, the shielding design of the final focusing system has been evaluated, in an iterative fashion, with other elements of the design. The present work reports on the status of the shielding design from the perspectives of superconductor/insulator radiation lifetimes, recirculating power needed to counter nuclear heating, and neutron activation, which affects both system maintainability and waste management. Models used herein include the last three focusing magnets, and a full, three-dimensional model for the target chamber. Analyses have been performed for 9-by-9 beam arrays, with a total of 120 beams (60 per side). Results and directions for future work are presented.