ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. F. Latkowski, W. R. Meier
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 300-304
Technical Paper | Fusion Energy - Advanced Designs | doi.org/10.13182/FST03-A351
Articles are hosted by Taylor and Francis Online.
The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) recently initiated an effort to reach an updated, self-consistent, integrated point design for a thick-liquid inertial fusion energy power plant. We call this design the Robust Point Design. As part of this effort, the shielding design of the final focusing system has been evaluated, in an iterative fashion, with other elements of the design. The present work reports on the status of the shielding design from the perspectives of superconductor/insulator radiation lifetimes, recirculating power needed to counter nuclear heating, and neutron activation, which affects both system maintainability and waste management. Models used herein include the last three focusing magnets, and a full, three-dimensional model for the target chamber. Analyses have been performed for 9-by-9 beam arrays, with a total of 120 beams (60 per side). Results and directions for future work are presented.