ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. F. Latkowski, W. R. Meier
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 300-304
Technical Paper | Fusion Energy - Advanced Designs | doi.org/10.13182/FST03-A351
Articles are hosted by Taylor and Francis Online.
The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) recently initiated an effort to reach an updated, self-consistent, integrated point design for a thick-liquid inertial fusion energy power plant. We call this design the Robust Point Design. As part of this effort, the shielding design of the final focusing system has been evaluated, in an iterative fashion, with other elements of the design. The present work reports on the status of the shielding design from the perspectives of superconductor/insulator radiation lifetimes, recirculating power needed to counter nuclear heating, and neutron activation, which affects both system maintainability and waste management. Models used herein include the last three focusing magnets, and a full, three-dimensional model for the target chamber. Analyses have been performed for 9-by-9 beam arrays, with a total of 120 beams (60 per side). Results and directions for future work are presented.