ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Jeffery F. Latkowski, Jasmina L. Vujic
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 298-340
Technical Paper | doi.org/10.13182/FST98-A35
Articles are hosted by Taylor and Francis Online.
A consistent method for the comparison of environmental, safety, and health (ES&H) characteristics of fusion power plant designs is developed. Such comparisons enable identification of trends in fusion ES&H characteristics and can be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics.A large number of radiological hazard indexes are defined in three different categories of hazard: accidents, occupational and routine exposures, and waste disposal. Using a consistent set of computer codes, data libraries, and assumptions, these radiological hazard indexes are calculated and compared for five inertial and two magnetic fusion energy power plant designs.The results of the analysis are threefold: The utility of low-activation materials (LAMs) is confirmed, the tremendous potential for the use of a thick-liquid system for first-wall protection is validated, and the strong need for materials that can last for the lifetime of the power plant is shown.The conservative radionuclide release fractions that are used show that all but one of the designs has only a minute chance of producing any early fatalities during an accident. The need for remote maintenance in most designs is confirmed, and the possibility of disposing of most fusion wastes via shallow land burial (if the methodology of current regulations is applied to fusion wastes) is shown.The need for more research in LAMs and for the experimental measurement of radionuclide release fractions under accident conditions is emphasized.