ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jeffery F. Latkowski, Jasmina L. Vujic
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 298-340
Technical Paper | doi.org/10.13182/FST98-A35
Articles are hosted by Taylor and Francis Online.
A consistent method for the comparison of environmental, safety, and health (ES&H) characteristics of fusion power plant designs is developed. Such comparisons enable identification of trends in fusion ES&H characteristics and can be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics.A large number of radiological hazard indexes are defined in three different categories of hazard: accidents, occupational and routine exposures, and waste disposal. Using a consistent set of computer codes, data libraries, and assumptions, these radiological hazard indexes are calculated and compared for five inertial and two magnetic fusion energy power plant designs.The results of the analysis are threefold: The utility of low-activation materials (LAMs) is confirmed, the tremendous potential for the use of a thick-liquid system for first-wall protection is validated, and the strong need for materials that can last for the lifetime of the power plant is shown.The conservative radionuclide release fractions that are used show that all but one of the designs has only a minute chance of producing any early fatalities during an accident. The need for remote maintenance in most designs is confirmed, and the possibility of disposing of most fusion wastes via shallow land burial (if the methodology of current regulations is applied to fusion wastes) is shown.The need for more research in LAMs and for the experimental measurement of radionuclide release fractions under accident conditions is emphasized.