ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. F. Santarius, G. L. Kulcinski, L. A. El-Guebaly
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 289-293
Technical Paper | Fusion Energy - Advanced Designs | doi.org/10.13182/FST03-A349
Articles are hosted by Taylor and Francis Online.
This paper investigates whether a fusion power plant could be designed to be passively proliferation-proof. Even low neutron production rates enable fissile-fuel breeding, so such a fusion reactor must burn neutron-lean fuels. To burn these fuels economically requires a high-power-density fusion concept, and a D-3He field-reversed configuration will be analyzed here. The paper discusses physics and engineering design features that would defeat attempts to modify the reactor to burn the neutron-rich fuels D-T and D-D. These include burning an advanced fusion fuel, utilizing direct energy conversion, minimizing the radius to leave inadequate room for D-T neutron shielding of superconducting magnets, designing a single-module, full-lifetime fusion core requiring no module changeout, and using an organic coolant.