ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
C. S. Debonnel, S. S. Yu, P. F. Peterson
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 274-278
Technical Paper | Fusion Energy - Advanced Designs | doi.org/10.13182/FST03-A346
Articles are hosted by Taylor and Francis Online.
This paper presents detailed design and analysis for x-ray ablation and venting in the 120-beam, 7-MJ heavy-ion fusion (HIF) "robust" point design. The HI Robust Point Design ("RPD-2002") is a self-consistent, non-optimized system design that has been generated as a point of reference for ongoing research in the HIF program. The point design uses a thick-liquid protected chamber, derived from HYLIFE-II - no structural surfaces face the target. A ternary salt mixture called flinabe (LiNaBeF4) has been selected for the liquid structures. Detailed two-dimensional, axially symmetric TSUNAMI calculations have been performed to determine the mass of ablation debris generated by the target x-rays following ignition and to predict the venting of the debris from the inside of the pocket into the main chamber and beam lines. These calculations provide predictions of the impulse loading to the surfaces of the liquid pocket - The closest liquid structures will experience a somewhat strong impulse, but further optimization of the design will easily decrease this impulse. The integrated mass and energy fluxes of ablation and target debris reaching the beam-line magnetic shutters are given as well: A small and acceptable magnetic dipole will prevent any debris ingression up in the final focus magnet region.