ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
C. S. Debonnel, S. S. Yu, P. F. Peterson
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 274-278
Technical Paper | Fusion Energy - Advanced Designs | doi.org/10.13182/FST03-A346
Articles are hosted by Taylor and Francis Online.
This paper presents detailed design and analysis for x-ray ablation and venting in the 120-beam, 7-MJ heavy-ion fusion (HIF) "robust" point design. The HI Robust Point Design ("RPD-2002") is a self-consistent, non-optimized system design that has been generated as a point of reference for ongoing research in the HIF program. The point design uses a thick-liquid protected chamber, derived from HYLIFE-II - no structural surfaces face the target. A ternary salt mixture called flinabe (LiNaBeF4) has been selected for the liquid structures. Detailed two-dimensional, axially symmetric TSUNAMI calculations have been performed to determine the mass of ablation debris generated by the target x-rays following ignition and to predict the venting of the debris from the inside of the pocket into the main chamber and beam lines. These calculations provide predictions of the impulse loading to the surfaces of the liquid pocket - The closest liquid structures will experience a somewhat strong impulse, but further optimization of the design will easily decrease this impulse. The integrated mass and energy fluxes of ablation and target debris reaching the beam-line magnetic shutters are given as well: A small and acceptable magnetic dipole will prevent any debris ingression up in the final focus magnet region.