ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
M. H. Anderson, R. Bonazza, M. L. Corradini
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 256-260
Technical Paper | Fusion Energy - Advanced Designs | doi.org/10.13182/FST03-A343
Articles are hosted by Taylor and Francis Online.
Several advanced fusion reactor design concepts for MFE power generation incorporate liquid metal as a protective layer or heat transfer medium. The presence of high magnetic fields, necessary to confine the plasma fuel in the core region of the device, effect these liquid metal systems. Recently computational methods have just begun to be able to give some insight into the effects of these high magnetic fields on the liquid metal systems, however experimental data is needed to verify the results of the computations and determine feasibility where computational methods are not possible due to computer resources or the lack of suitable models to deal with turbulence suppression. A series of experiments conducted with helium gas injection (16 - 85 cm3/s) through a 1.6 mm injector into a 2.54 cm liquid metal pool (NaK) with a horizontal magnetic field from 0-6T have been conducted to evaluate a particular reactor power extraction process and to serve as a data base for computational comparison.