ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Nobuyuki Nakashio, Masabumi Nishikawa
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 287-297
Technical Paper | doi.org/10.13182/FST98-A34
Articles are hosted by Taylor and Francis Online.
In the course of tritium handling using a certain tritium processing system, the tritium concentration at the outlet of the system changes with time in a manner peculiar to the system when a gas stream containing tritium is introduced because tritium is apt to be trapped on the surfaces of the system. This phenomenon is called the system effect. A study on the behavior of tritium at the outlet of a processing system could lead to erroneous results if the system effect is neglected. A way to quantify the system effects of a processing system is discussed. The system effects are classified into static system effect and kinetic system effect. The former represents the total amount of tritium to be trapped on the tritium facing surfaces of the system and the latter represents the synthetic result of kinetic behavior of tritium in the subsystems that compose the whole system. The system effect of the experimental piping system is well expressed by applying the serial reactor model to the piping system when the isotope exchange reaction between tritiated water in the process gas and water on the surface of piping materials is dominant. Accordingly, it is concluded that the application of the serial reactor model makes it possible to evaluate the system effects when the dominant reactions in each subsystem of the system are specified.