ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Nobuyuki Nakashio, Masabumi Nishikawa
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 287-297
Technical Paper | doi.org/10.13182/FST98-A34
Articles are hosted by Taylor and Francis Online.
In the course of tritium handling using a certain tritium processing system, the tritium concentration at the outlet of the system changes with time in a manner peculiar to the system when a gas stream containing tritium is introduced because tritium is apt to be trapped on the surfaces of the system. This phenomenon is called the system effect. A study on the behavior of tritium at the outlet of a processing system could lead to erroneous results if the system effect is neglected. A way to quantify the system effects of a processing system is discussed. The system effects are classified into static system effect and kinetic system effect. The former represents the total amount of tritium to be trapped on the tritium facing surfaces of the system and the latter represents the synthetic result of kinetic behavior of tritium in the subsystems that compose the whole system. The system effect of the experimental piping system is well expressed by applying the serial reactor model to the piping system when the isotope exchange reaction between tritiated water in the process gas and water on the surface of piping materials is dominant. Accordingly, it is concluded that the application of the serial reactor model makes it possible to evaluate the system effects when the dominant reactions in each subsystem of the system are specified.