ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Panos J. Karditsas, Neill P. Taylor
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 227-231
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST03-A338
Articles are hosted by Taylor and Francis Online.
As part of the European Power Plant Conceptual Study, two different divertor designs were proposed, based on previous work on HETS (High Efficiency Thermal Shield) performed at FZK and ENEA. The coolant is helium gas at pressures in the range 10-14 MPa and the inlet temperatures are in the range of 500-800°C. The geometrical complexity of the designs made prediction of heat transfer coefficients, needed for conducting thermal and structural analysis, difficult, and the calculated values from empirical correlations uncertain. This paper presents and summarises results of thermal-fluid calculations performed on both divertor concepts and gives estimates of effective values of heat transfer coefficients based on the local flow conditions and temperature distributions. The agreement of calculations with experimental values for similar conditions, inspires confidence in results from such calculations, and demonstrates that computational fluid dynamic finite element codes can accurately predict behaviour, and can be used to optimise the designs.