ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Panos J. Karditsas, Neill P. Taylor
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 227-231
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST03-A338
Articles are hosted by Taylor and Francis Online.
As part of the European Power Plant Conceptual Study, two different divertor designs were proposed, based on previous work on HETS (High Efficiency Thermal Shield) performed at FZK and ENEA. The coolant is helium gas at pressures in the range 10-14 MPa and the inlet temperatures are in the range of 500-800°C. The geometrical complexity of the designs made prediction of heat transfer coefficients, needed for conducting thermal and structural analysis, difficult, and the calculated values from empirical correlations uncertain. This paper presents and summarises results of thermal-fluid calculations performed on both divertor concepts and gives estimates of effective values of heat transfer coefficients based on the local flow conditions and temperature distributions. The agreement of calculations with experimental values for similar conditions, inspires confidence in results from such calculations, and demonstrates that computational fluid dynamic finite element codes can accurately predict behaviour, and can be used to optimise the designs.