ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. Tanigawa, K. Shiba, M. A. Sokolov, R. L. Klueh
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 206-210
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST44-206
Articles are hosted by Taylor and Francis Online.
The effects of irradiation up to 20 dpa on the Charpy impact properties of reduced-activation ferritic/martensitic steels (RAFs) were investigated. The ductile-brittle transition temperature (DBTT) of F82H-IEA shifted up to around 323K. TIG weldments of F82H showed a fairly small variation on their impact properties. A finer prior austenite grain size in F82H-IEA after a different heat treatment resulted in a 20K lower DBTT compared to F82H-IEA after the standard heat treatment, and that effect was maintained even after irradiation. Helium effects were investigated utilizing Ni-doped F82H, but no obvious evidence of helium effects was obtained. ORNL9Cr-2WVTa and JLF-1 steels showed smaller DBTT shifts compared to F82H-IEA.