ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Tomotsugu Sawai, Masami Ando, Eiichi Wakai, Kiyoyuki Shiba, Shiro Jitsukawa
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 201-205
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A334
Articles are hosted by Taylor and Francis Online.
Nickel-doped F82H alloys have been fabricated to simulate He production due to fusion neutrons in fission reactor irradiation. 1.2Ni and 1.4Ni alloys were tempered at 750°C without re-austenitisation. Expected He production in 1.4% Ni alloy irradiated in HFIR target position is about 400 appm at 40 dpa. Results of tensile and Charpy impact tests of these alloys show that their mechanical properties are similar to those of original F82H, although 0.2% proof stresses of Ni-doped alloys were 50 Mpa smaller than that of F82H. Small amount of two isotope tailored alloys including 1.4wt% Ni are also prepared using 58Ni and 60Ni. Chemical analyses and Charpy impact tests of the mock-up heat suggest that the fabrication of these small heats was successful.