ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. Sakasegawa, A. Kohyama, Y. Katoh, M. Tamura, Y. Khono, A. Kimura
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 196-200
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A333
Articles are hosted by Taylor and Francis Online.
Reduced Activation Ferritic/Martensitic steels (RAFs) are leading candidates for blanket and first wall structures of the D-T fusion reactors. Recently, in order to achieve better efficiency of energy conversion by using RAFs in advanced blanket systems, improvement of high temperature mechanical property of RAFs is desired. In this work, experimental alloys, FETA-series (Fe-Ta-C or N) steels, were prepared to observe precipitation hardening mechanism by MX-type particles at elevated temperatures in detail. According to the results, innovative improvement of creep property can be achieved by applying of precipitation hardening by very fine TaX (X=C, N) particles. With increasing tantalum content, finer dispersion of MX-type particles, dislocation structures and sub-grain structures were observed by TEM (Transmission Electron Microscopy). These fine structures contributed to the improvement of creep property.