ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
H. Sakasegawa, A. Kohyama, Y. Katoh, M. Tamura, Y. Khono, A. Kimura
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 196-200
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A333
Articles are hosted by Taylor and Francis Online.
Reduced Activation Ferritic/Martensitic steels (RAFs) are leading candidates for blanket and first wall structures of the D-T fusion reactors. Recently, in order to achieve better efficiency of energy conversion by using RAFs in advanced blanket systems, improvement of high temperature mechanical property of RAFs is desired. In this work, experimental alloys, FETA-series (Fe-Ta-C or N) steels, were prepared to observe precipitation hardening mechanism by MX-type particles at elevated temperatures in detail. According to the results, innovative improvement of creep property can be achieved by applying of precipitation hardening by very fine TaX (X=C, N) particles. With increasing tantalum content, finer dispersion of MX-type particles, dislocation structures and sub-grain structures were observed by TEM (Transmission Electron Microscopy). These fine structures contributed to the improvement of creep property.