ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. Gan, J. I. Cole, T. R. Allen, R. B. Dropek, G. S. Was
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 191-195
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A332
Articles are hosted by Taylor and Francis Online.
Model alloys of 304 Stainless Steels (SS) (Fe-18Cr-9.5Ni-1.75Mn) and 304 SS+Zr (Fe-18Cr-9.5Ni-1.75Mn+0.04Zr and Fe-18Cr-9.5Ni-1.75Mn+ 0.16Zr) were irradiated with 3.2 MeV protons to a dose of 1.0 dpa at 400°C. Following irradiation, the microstructure was characterized. The number density, defect size, and size distributions for faulted loops and voids were determined. Swelling for each irradiation condition was calculated based on the void measurements. The effect of Zr addition on the irradiated microstructure and hardening is clearly demonstrated. The number density of defects decreased with the Zr addition while the size change of faulted loops and voids is less pronounced. Radiation hardening was reduced by Zr addition.Void swelling is decreased with Zr addition. The reduction in void density and swelling may be caused by the enhanced recombination of defects at oversized Zr solute atoms, suppressing the vacancy super saturation and therefore directly suppressing void nucleation. The reduction in loop density is believed due to the enhanced point defects recombination caused by oversized solute Zr.