ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sosuke Kondo, Keyong Hwan Park, Yutai Katoh, Akira Kohyama
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 181-185
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A330
Articles are hosted by Taylor and Francis Online.
High temperature and high dose irradiation effects on microstructural evolution in high purity -SiC was studied by Single- and dual-ion irradiation, where 5.1 MeV Si2+ ions for displacement damage and 1 MeV He+ ions for (n, ) simulation were implanted at 1673 K. From a cross-sectional transmission electron microscopy (XTEM) study of the -SiC irradiated with single-ion up to a dose of 100 dpa, high density dislocation loops were observed. Sizes and concentrations of the loops are dependant on displacement damage level. In the dual-ion irradiated specimen, dislocation network was observed through the dual-ion irradiated region. At the same time, cavities were formed in both the grain and grain boundary. In front of the irradiated surface, localized growth of the cavities was observed. TEM micrographs demonstrate that the helium had a large mobility on grain boundary and dislocation network under high temperature irradiation. It is clarified that helium largely contributes to the development of irradiation-induced microstructural defects. The formation mechanisms of microstructural defects were also discussed.