ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
A. Hasegawa, S. Nogami, S. Miwa, K. Abe, T. Taguchi, N. Igawa
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 175-180
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A329
Articles are hosted by Taylor and Francis Online.
The mechanical properties of advanced SiC/SiC composite and polycrystalline, monolithic -SiC under dual- and triple-ions irradiation to 1 and 10 dpa at 800°C, 1000°C, and 1300°C were investigated by a Nano-indentation test. Preliminary microstructural analysis by transmission electron microscopy was performed. Hardness and elastic modulus changes in response to ion irradiation were observed, but synergistic effects on these mechanical properties were not significant. In contrast, microstructural observation of the composites after 10 dpa at 1000°C showed that cavity formation behavior was dependent on the material and the helium or hydrogen implanted mode. The effect of gas elements on cavity formation and the mechanical properties are discussed.