ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
D. R. Williamson, R. R. Peterson, J. P. Blanchard
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 169-174
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A328
Articles are hosted by Taylor and Francis Online.
The capability of using the Z-Machine at Sandia to perform isentropic compression experiments has been discussed by Hall previously. Pressures exceeding 1.5 Mbar have been launched into materials and the pressure wave can be shaped by varying the load current in Z. In this paper, theoretical results will be presented for an aluminum sample in which we obtain isentropic equations of state (EOS) information.Obtaining the isentropic EOS is necessary in many scientific and technological fields for computer simulations. We will follow the procedure outlined by Reisman to determine the EOS. From these steps, we will determine the theoretical EOS of aluminum using data obtained from BUCKY. We will discuss any variances we have in our results due to the use of two different sets of EOS opacity data.The results presented here were obtained using BUCKY, a 1-D MHD code developed at the University of Wisconsin-Madison. BUCKY is a code that simulates highenergy density plasmas and target yields for Inertial Confinement Fusion (ICF). BUCKY was originally designed to study target physics and target chamber designs for ICF reactors but can be used to study Isentropic Compression Experiments.We will describe the procedure used to determine the velocity wave profile measurements that leads to determining EOS. From the velocity wave profile we will be able to determine the isentropic compression equations of state of the aluminum sample modeled.