ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
D. R. Williamson, R. R. Peterson, J. P. Blanchard
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 169-174
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A328
Articles are hosted by Taylor and Francis Online.
The capability of using the Z-Machine at Sandia to perform isentropic compression experiments has been discussed by Hall previously. Pressures exceeding 1.5 Mbar have been launched into materials and the pressure wave can be shaped by varying the load current in Z. In this paper, theoretical results will be presented for an aluminum sample in which we obtain isentropic equations of state (EOS) information.Obtaining the isentropic EOS is necessary in many scientific and technological fields for computer simulations. We will follow the procedure outlined by Reisman to determine the EOS. From these steps, we will determine the theoretical EOS of aluminum using data obtained from BUCKY. We will discuss any variances we have in our results due to the use of two different sets of EOS opacity data.The results presented here were obtained using BUCKY, a 1-D MHD code developed at the University of Wisconsin-Madison. BUCKY is a code that simulates highenergy density plasmas and target yields for Inertial Confinement Fusion (ICF). BUCKY was originally designed to study target physics and target chamber designs for ICF reactors but can be used to study Isentropic Compression Experiments.We will describe the procedure used to determine the velocity wave profile measurements that leads to determining EOS. From the velocity wave profile we will be able to determine the isentropic compression equations of state of the aluminum sample modeled.