ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Peter H. Titus, Matteo Salvetti
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 163-168
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A327
Articles are hosted by Taylor and Francis Online.
All three burning plasma experiments discussed at Snowmass during the summer of 2002, use preloaded structures to resist some component of the operating loads. For the resistive pulsed reactors, it is the preloads which introduce the most noticeable creep responses because these loads are applied for much longer than the operating loads. If the preloads are maintained during shut-down and maintenance periods, then the structure experiences the preload stresses at room temperature. OFHC copper has significant creep behavior, predominantly at high stress and high temp, but copper experiences finite creep even at cryogenic temperatures. The Beryllium copper used in the FIRE inner leg has better creep properties than OFHC copper.The purpose of these analyses is to characterize the influence of creep on the magnets of the Fusion Ignition Research Reactor (FIRE) and compare it with the creep response of the other proposed burning plasma experiments. The concern is that the desirable features provided by coil preloads will be lost over the lives of the experiments. Structural finite element models of FIRE and IGNITOR are used with creep equations derived from NIST[6] data to explore the structural sensitivity of the machines to creep. For both FIRE and IGNITOR, copper coil material, creep has been found to have a minimal effect on magnet performance. IGNITOR's generally lower stresses (with respect to FIRE's BeCu TF stresses) and the use of active as well as passive preload systems helps reduce creep to acceptable levels. FIRE's structure is more sensitive to creep due to the free standing wedged TF coil, but the BeCu used in FIRE's inner TF legs has a much lower creep behavior than ETP or OFHC copper. This reduces creep to acceptable levels. For FIRE, however, there is some creep in the horizontal legs which relaxes some of the support of the inner leg. Recommendations are presented to support the OFHC copper horizontal legs more effectively. More work is needed to address the multiple load-unload cycling effects on creep.