ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. K. Anderson, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, ARIES Team
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 132-137
Technical Paper | Fusion Energy - IFE Chamber Technology | doi.org/10.13182/FST03-A322
Articles are hosted by Taylor and Francis Online.
The fusion event in inertial fusion energy reactors can damage the chamber first walls. The Prometheus design study used a high-speed tangentially injected thin film of molten lead to protect the upper endcap of the reactor chamber. To assure full chamber coverage, the film must remain attached. Film detachment due to gravitational effects is most likely to occur on downward-facing surfaces.Experiments were therefore conducted on turbulent water films with initial thicknessess and speeds up to 2 mm and 11 m/s, respectively, onto the downward-facing surface of a flat plate 0-45° below the horizontal. Average film detachment and lateral extent along the plate were measured. Detachment length appears to be a linear function of Froude number. Results for film flows over wetting and nonwetting surfaces show that surface wettability has a major impact. The data are used to establish conservative "design windows" for film detachment. Film flow around cylindrical obstacles, modeling protective dams around chamber penetrations, was also studied. The results suggest that cylindrical dams cannot be used to protect penetrations, and that new chamber penetration geometries that avoid flow separation are a major design issue for this type of thin liquid protection.