ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
A. R. Raffray, R. Petzoldt, J. Pulsifer, M. S. Tillack, X. Wang
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 111-116
Technical Paper | Fusion Energy - IFE Chamber Technology | doi.org/10.13182/FST03-A319
Articles are hosted by Taylor and Francis Online.
During injection, inertial fusion energy (IFE) direct drive (DD) targets are subject to heating from energy exchange with the background gas and radiation from the wall. This heat deposition could lead to deuterium-tritium (DT) phase change and target deformation violating the target physics symmetry requirements. This paper assesses the thermal behavior of the target under such conditions and explores possible ways of extending the target lifetime.