ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Abou-Sena, A. Ying, M. Abdou
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 79-84
Technical Paper | Fusion Energy - MFE Chamber Technology | doi.org/10.13182/FST03-A314
Articles are hosted by Taylor and Francis Online.
Beryllium, in its pebble form, has been proposed in various blanket concepts to serve different purposes. Thermal property data for such a heterogeneous packed bed is needed, particularly data on the impact of compression forces on its magnitude and consequent temperature profile. The objectives of this work are to obtain and quantify experimental data on the effective thermal conductivity of a Be-He packed bed, on the interface heat conductance between Be and SiC, and on the effects of externally applied pressure on these effective thermal properties. The effective thermal conductivity of a Be-He pebble bed increases as the bed mean temperature increases. The values of effective thermal conductivity vary from 2.15 to 3.00 W/m.K for bed mean temperature ranges from 90 to 420 °C. Similar temperature effects are seen in the Be/SiC interface heat conductance, as the values of interface heat conductance range from 1140 to 2200 W/m2.K. In addition, effective thermal conductivity increases remarkably with the increase of applied pressure (by a factor of 2.53 at 2 MPa), while it remains higher than the initial value by ~0.3 W/m.K when external pressure is released (hysteresis effect).