ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Abou-Sena, A. Ying, M. Abdou
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 79-84
Technical Paper | Fusion Energy - MFE Chamber Technology | doi.org/10.13182/FST03-A314
Articles are hosted by Taylor and Francis Online.
Beryllium, in its pebble form, has been proposed in various blanket concepts to serve different purposes. Thermal property data for such a heterogeneous packed bed is needed, particularly data on the impact of compression forces on its magnitude and consequent temperature profile. The objectives of this work are to obtain and quantify experimental data on the effective thermal conductivity of a Be-He packed bed, on the interface heat conductance between Be and SiC, and on the effects of externally applied pressure on these effective thermal properties. The effective thermal conductivity of a Be-He pebble bed increases as the bed mean temperature increases. The values of effective thermal conductivity vary from 2.15 to 3.00 W/m.K for bed mean temperature ranges from 90 to 420 °C. Similar temperature effects are seen in the Be/SiC interface heat conductance, as the values of interface heat conductance range from 1140 to 2200 W/m2.K. In addition, effective thermal conductivity increases remarkably with the increase of applied pressure (by a factor of 2.53 at 2 MPa), while it remains higher than the initial value by ~0.3 W/m.K when external pressure is released (hysteresis effect).