ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
E. A. Mogahed
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 69-73
Technical Paper | Fusion Energy - MFE Chamber Technology | doi.org/10.13182/FST03-A312
Articles are hosted by Taylor and Francis Online.
A helical coolant channel scheme is proposed for the APEX solid wall blanket module. The self-coolant breeder in this system is FLIBE (LiF)2(BeF2). The structural material is the nanocomposited alloy 12YWT. The neutron multiplier used in the current design is either stationary or slow moving liquid lead. The purpose of this study is to design a blanket that can handle a high wall loading (5 MW/m2). In the mean time the design provides means to attain the maximum possible blanket outlet temperature and meet all engineering limits on temperature of structural material and liquids. An important issue for such a design is to optimize the system for minimum pressure loss. For advanced ferritic steel (12YWT) an upper temperature limit of 800°C is expected, and a limit of 700°C at the steel/FLIBE interface is recommended.The blanket module is composed of two main continuous routes. The first route is three helical rectangular channels side-by-side that surround a central box. The helical channels are fed from the bottom and exit at the top to feed the central channels in the central box. The coolant helical channels have a cross sectional area with a length of about 10 cm and a width that changes according to the position around the central box. For instance: the width of the coolant channels facing the plasma is the narrowest while it is the widest in the back (farthest from the plasma).In this design the coolant runs around the central box for only 5 turns to cover the total height of the first wall (6.8 m). The design is optimized with the FW channel width as a parameter with the heat transfer requirements at the first wall as the constraints.