ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Rajendra Prashad Anand, Tejen Kumar Basu, Damaraju V. S. Ramakrishna
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 370-377
Technical Paper | Blanket Engineering | doi.org/10.13182/FST97-A30839
Articles are hosted by Taylor and Francis Online.
Uranium-233 breeding studies are carried out in a compact thorium-oxide cylindrical blanket assembly surrounded by a thick polypropylene reflector in a fusion neutron environment. The assembly consists of 11 rings of thorium-oxide rods stacked in a hexagonal geometry with a central through channel for the 14-MeV (d, t) neutron source. A total of 120 thorium-oxide probes are inserted inside the rods in different axial and radial locations in the assembly, which is then subjected to 14-MeV neutron irradiation for 25 h. Protactinium-233 gamma activity produced in the probes because of neutron captures in the thorium is measured using a high-efficiency, high-purity germanium detector. The measured 233U production rates are fitted to obtain axial and radial distributions for different rings. These distributions are used to obtain the total 233U breeding in the whole assembly. The integral measured values are found to be in good agreement with the calculated values obtained employing the MCNP Monte Carlo code using the BMCCS2 cross-section library.