ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Rajendra Prashad Anand, Tejen Kumar Basu, Damaraju V. S. Ramakrishna
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 370-377
Technical Paper | Blanket Engineering | doi.org/10.13182/FST97-A30839
Articles are hosted by Taylor and Francis Online.
Uranium-233 breeding studies are carried out in a compact thorium-oxide cylindrical blanket assembly surrounded by a thick polypropylene reflector in a fusion neutron environment. The assembly consists of 11 rings of thorium-oxide rods stacked in a hexagonal geometry with a central through channel for the 14-MeV (d, t) neutron source. A total of 120 thorium-oxide probes are inserted inside the rods in different axial and radial locations in the assembly, which is then subjected to 14-MeV neutron irradiation for 25 h. Protactinium-233 gamma activity produced in the probes because of neutron captures in the thorium is measured using a high-efficiency, high-purity germanium detector. The measured 233U production rates are fitted to obtain axial and radial distributions for different rings. These distributions are used to obtain the total 233U breeding in the whole assembly. The integral measured values are found to be in good agreement with the calculated values obtained employing the MCNP Monte Carlo code using the BMCCS2 cross-section library.