ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sante Cirant, Gabriele D'Antona, Enzo Lazzaro, Gabriella Ramponi
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 338-349
Technical Paper | Plasma Engineering | doi.org/10.13182/FST97-A30837
Articles are hosted by Taylor and Francis Online.
The design of a feedback system based on the application of electron cyclotron (EC) current drive in high-density tokamak plasmas is presented. A realistic evaluation is given of the current drive produced by high-power gyrotron tubes for EC-wave beams injected from the low field side in the O-mode polarization. The driven current, calculated using a relativistic analytical formalism along the ray trajectories, is inserted in a consistent theory of nonlinear tearing-mode evolution. Results of modeling calculations are presented, showing the possibility of controlling by means of a digital system the evolution of the width of rotating magnetic perturbations by phase-locked modulation of the gyrotron power source.