ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Otto J. A. Reifenschweiler
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 291-299
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST97-A30832
Articles are hosted by Taylor and Francis Online.
Recently a sharp decrease in the radioactivity of tritium was reported, and a preliminary explanation of this effect was formulated in terms of a nuclear-pair hypothesis. Through the evaluation of several gas-solid exchange and diffusion experiments of others, where heavy radionuclides (65Zn, 63Ni, 85Sr) are used as tracers, it can be shown that such an effect may also exist for these nuclei. In all these experiments the second law of thermodynamics seems to be grossly violated. By pure formal application of the nuclear-pair hypothesis, all such deviations from normal behavior can be explained. Several straightforward experiments are proposed to prove the decrease in radioactivity of heavy nuclei.