ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
John G. Woodworth, Wayne R. Meier
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 280-290
Technical Paper | ICF Target | doi.org/10.13182/FST97-A30831
Articles are hosted by Taylor and Francis Online.
Inertial fusion energy (IFE) power plants will require the ignition and burn of five to ten fusion fuel targets every second. The technology to economically mass produce high-quality precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. A baseline target factory conceptual design is described, and its capital and operating costs are estimated. The result is a total production cost of ∼16¢/target. At this level, target production represents ∼6% of the estimated cost of electricity from a 1-GW(electric) IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power levels.