ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kyung-Ho Kang, Joachim A. Maruhn
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 251-264
Technical Paper | ICF Target | doi.org/10.13182/FST97-A30829
Articles are hosted by Taylor and Francis Online.
Using a relatively simple static model and allowing a number of additional radiation shields in an axially symmetric hohlraum having two converters, a systematic process of reducing the asymmetry of the radiation field on a fusion capsule is presented. As a result of this procedure, a hohlraum target is obtained that shows a high degree of symmetrization even in a very early stage of irradiation. The sensitivity of the symmetry to the form and the position of each hohlraum component is investigated. To increase the reliability of the results, an enhanced model of radiation reemission in a hohlraum target, including reemission of the converter, is developed. Using this enhanced model it is found that the obtained hohlraum configuration is still valid, while the simple reemission model leads to incorrect results in special cases. It is also shown that the detailed configuration of a hohlraum target, especially of the radiation shields, depends considerably on the temperature distribution of the converter surface, but it is always possible to achieve a high degree of symmetry with radiation shields.