ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Tadayoshi Ohmori, Michio Enyo, Tadahiko Mizuno, Yoshinobu Nodasaka, Hideki Minagawa
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 210-218
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST97-A30823
Articles are hosted by Taylor and Francis Online.
The identification of some reaction products possibly produced during the generation of excess energy is attempted. Electrolysis is performed for 7 days with a constant current intensity of 1 A. The electrolytes used are Na2SO4, K2SO4, K2CO3, and KOH. After the electrolysis, the elements in the electrode near the surface are analyzed by Auger electron spectroscopy and electron probe microanalysis. In every case, a notable amount of iron atoms in the range of 1.0 × 1016 to 1.8 × 1017 atom/cm2 (true area) are detected together with the generation of a certain amount of excess energy evolution. The isotopic abundance of iron atoms, which are 6.5, 77.5, and 14.5% for 54Fe, 56Fe, and 57Fe, respectively, and are obviously different from the natural isotopic abundance, are measured at the top surface of a gold electrode by secondary ion mass spectrometry. The content of 57Fe tends to increase up to 25% in the more inner layers of the electrode.