ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Masabumi Nishikawa, Kohsaku Takahashi, Kenzo Munakata, Satoshi Fukada, Kenji Kotoh, Toshiharu Takeishi
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 175-184
Technical Paper | Tritium System | doi.org/10.13182/FST97-A30820
Articles are hosted by Taylor and Francis Online.
At present, the standard arrangement of the air cleanup system responsible for emergency tritium recovery from room air is a catalytic oxidation bed with a heater followed by an adsorption bed with a cooler. One disadvantage of this arrangement is that trouble with the heater or the cooler could result in a loss of capacity to recover tritium. Another disadvantage of the catalyst-adsorption-bed arrangement is that tritiated water must be recovered with a high decontamination factor after dilution with a large amount of water vapor in the working atmosphere. The performance of a new arrangement for the air cleanup system, which consists of a precious metal catalyst bed preceded by an adsorption bed without heating equipment, is discussed. According to calculations, most of the tritium released to the room air is recovered in the catalyst bed through oxidation, adsorption, and isotope exchange reaction when the new arrangement is applied. The adsorption bed placed before the catalyst bed dehumidifies the process gas to such a degree that the oxidation reaction of tritium in the catalyst bed is not hindered by water vapor.