ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
D. B. Hayden, D. N. Ruzic
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 128-134
Technical Paper | Divertor System | doi.org/10.13182/FST97-A30815
Articles are hosted by Taylor and Francis Online.
The Monte Carlo code DEGAS was used to investigate the neutral atom and molecular interactions for a high-pressure (∼1-Torr) gaseous divertor in the International Thermonuclear Experimental Reactor (ITER). Energy is removed from the plasma by radiation while the plasma pressure is balanced predominantly by a high neutral pressure at the end of the divertor. Plasma parameters were taken from the two-dimensional fluid code PLANET. Neutral sources from both ions recycling off the walls and recombination were included. The neutral density peak calculated with DEGAS of 3.43 ± 0.01 × 1022 m−3 occurred 4.5 cm from the divertor channel end. The ion and neutral atom energy fluxes were calculated to determine the heat load onto the divertor walls. A code was written to calculate the radiation distribution onto the side walls, not including any radiative absorption or reemission. The total energy flux peak (including ions, neutrals, and radiation) was 4.28 ± 0.30 MW/m2. This falls below the design criteria of 5 MW/m2. These results may help determine the wall material, heat removal, and the vacuum pumping requirements for the ITER divertor design and show the importance of a full treatment of neutral atoms and molecules in these regimes.