ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. B. Hayden, D. N. Ruzic
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 128-134
Technical Paper | Divertor System | doi.org/10.13182/FST97-A30815
Articles are hosted by Taylor and Francis Online.
The Monte Carlo code DEGAS was used to investigate the neutral atom and molecular interactions for a high-pressure (∼1-Torr) gaseous divertor in the International Thermonuclear Experimental Reactor (ITER). Energy is removed from the plasma by radiation while the plasma pressure is balanced predominantly by a high neutral pressure at the end of the divertor. Plasma parameters were taken from the two-dimensional fluid code PLANET. Neutral sources from both ions recycling off the walls and recombination were included. The neutral density peak calculated with DEGAS of 3.43 ± 0.01 × 1022 m−3 occurred 4.5 cm from the divertor channel end. The ion and neutral atom energy fluxes were calculated to determine the heat load onto the divertor walls. A code was written to calculate the radiation distribution onto the side walls, not including any radiative absorption or reemission. The total energy flux peak (including ions, neutrals, and radiation) was 4.28 ± 0.30 MW/m2. This falls below the design criteria of 5 MW/m2. These results may help determine the wall material, heat removal, and the vacuum pumping requirements for the ITER divertor design and show the importance of a full treatment of neutral atoms and molecules in these regimes.