ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
D. B. Hayden, D. N. Ruzic
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 128-134
Technical Paper | Divertor System | doi.org/10.13182/FST97-A30815
Articles are hosted by Taylor and Francis Online.
The Monte Carlo code DEGAS was used to investigate the neutral atom and molecular interactions for a high-pressure (∼1-Torr) gaseous divertor in the International Thermonuclear Experimental Reactor (ITER). Energy is removed from the plasma by radiation while the plasma pressure is balanced predominantly by a high neutral pressure at the end of the divertor. Plasma parameters were taken from the two-dimensional fluid code PLANET. Neutral sources from both ions recycling off the walls and recombination were included. The neutral density peak calculated with DEGAS of 3.43 ± 0.01 × 1022 m−3 occurred 4.5 cm from the divertor channel end. The ion and neutral atom energy fluxes were calculated to determine the heat load onto the divertor walls. A code was written to calculate the radiation distribution onto the side walls, not including any radiative absorption or reemission. The total energy flux peak (including ions, neutrals, and radiation) was 4.28 ± 0.30 MW/m2. This falls below the design criteria of 5 MW/m2. These results may help determine the wall material, heat removal, and the vacuum pumping requirements for the ITER divertor design and show the importance of a full treatment of neutral atoms and molecules in these regimes.