ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. N. Ruzic, D. B. Hayden
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 123-127
Technical Paper | Divertor System | doi.org/10.13182/FST97-A30814
Articles are hosted by Taylor and Francis Online.
One option for particle and power handling in the International Thermonuclear Experimental Reactor (ITER) is the creation of a low-pressure (∼10-mTorr) gaseous divertor. The divertor would have a long channel over which energy would be removed from the plasma by radiation, and the plasma pressure would be balanced by a change inflow velocities and neutral pressures entering the sides of the channel This combination should substantially reduce the ion energy and ion flux that impact the eventual end of the divertor channel. For this concept to work, momentum must be removed from the plasma by the neutral atoms and molecules. Plasma parameters were taken from a DDC83 code solution. A Monte Carlo treatment of the plasma-neutral interactions has been obtained using DEGAS, which includes charge-exchange, recombination, ion-neutral, and neutral-neutral elastic collisions. Results show that the momentum transferred to the side walls is insufficient by two orders of magnitude to achieve the pressure reduction needed. Each molecule that enters the plasma makes hundreds of elastic and inelastic collisions in the plasma and then is more likely to be ionized (transferring the momentum back to the plasma) than to travel to a wall.