ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. N. Ruzic, D. B. Hayden
Fusion Science and Technology | Volume 31 | Number 2 | March 1997 | Pages 123-127
Technical Paper | Divertor System | doi.org/10.13182/FST97-A30814
Articles are hosted by Taylor and Francis Online.
One option for particle and power handling in the International Thermonuclear Experimental Reactor (ITER) is the creation of a low-pressure (∼10-mTorr) gaseous divertor. The divertor would have a long channel over which energy would be removed from the plasma by radiation, and the plasma pressure would be balanced by a change inflow velocities and neutral pressures entering the sides of the channel This combination should substantially reduce the ion energy and ion flux that impact the eventual end of the divertor channel. For this concept to work, momentum must be removed from the plasma by the neutral atoms and molecules. Plasma parameters were taken from a DDC83 code solution. A Monte Carlo treatment of the plasma-neutral interactions has been obtained using DEGAS, which includes charge-exchange, recombination, ion-neutral, and neutral-neutral elastic collisions. Results show that the momentum transferred to the side walls is insufficient by two orders of magnitude to achieve the pressure reduction needed. Each molecule that enters the plasma makes hundreds of elastic and inelastic collisions in the plasma and then is more likely to be ionized (transferring the momentum back to the plasma) than to travel to a wall.