ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Richard B. Stephens, G. Collins
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 485-490
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST97-A30807
Articles are hosted by Taylor and Francis Online.
Absorbed IR energy can supplement the beta decay energy from DT ice to improve the driving force toward uniform layers. A significant problem with this approach has been to deliver the added IR energy with sufficient uniformity to enhance rather than destroy the uniformity of the ice layers. Computer modeling has indicated that one can achieve ∼1% uniformity in the angular variation of the absorbed power using an integrating sphere containing holes large enough to allow external inspection of the ice layer uniformity. The power required depends on the integrating sphere size; a 25 mm diameter sphere requires ∼35 mW of IR to deposit as much energy in the ice as the 50 mW/cm3(35 µW total) received from tritium decay in DT. Power absorbed in the plastic can cause unacceptable ice-layer non-uniformities for the integrating sphere design considered here.