ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Alan K. Burnham, Craig S. Alford, Daniel M. Makowiecki, Thomas R. Dittrich, Russell J. Wallace, Eric C. Honea, Charlotte M. King, David Steinman
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 456-462
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST97-A30801
Articles are hosted by Taylor and Francis Online.
Boron carbide (B4C) is examined as a potential fuel container and ablator for implosion capsules on the National Ignition Facility (NIF). A capsule of pure B4C encasing a layer of solid DT implodes stably and ignites with anticipated NIF x-ray drives, producing 18 MJ of energy. Thin films of B4C were found to be resistant to oxidation and modestly transmitting in the infrared (IR), possibly enabling IR fuel characterization and enhancement for thin permeation barriers but not for full-thickness capsules. Polystyrene mandrels 0.5 mm in diameter were successfully coated with 0.15–2.0 µm of B4C. Thicknesses estimated from optical density agreed well with those measured by scanning electron microscopy (SEM). The B4C microstructure was columnar but finer than for Be made at the same conditions. B4C is a very strong material, with a fiber tensile strength capable of holding NIF fill pressures at room temperature, but it is also very brittle, and microscopic flaws or grain structure may limit the noncryogenic fill pressure. Argon (Ar) permeation rates were measured for a few capsules that had been further coated with 5 µm of plasma polymer. The B4C coatings tended to crack under tensile load. Some shells filled more slowly than they leaked, suggesting that the cracks open and close under opposite pressure loading. As observed earlier for Ti coatings, 0.15-µm layers of B4C had better gas retention properties than 2-µm layers, possibly because of fewer cracks. Permeation and fill strength issues for capsules with a full ablator thickness of B4C are unresolved.