ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
R.W. Springer, B.J. Cameron, G.A. Reeves
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 449-455
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST97-A30800
Articles are hosted by Taylor and Francis Online.
A new ion beam technology has been developed which allows the specific control of a number of material parameters not previously or easily controlled during thin film fabrication. The new device is a modified Kaufman ion source. The principal differences are in the design of the grids, and the fact that the gun has an open bottom structure. An additional grid has been added on the bottom to contain the plasma and force the gun to be “unidirectional.” The gun operates by forming an electron driven plasma in the center, while allowing evaporated material to pass through this plasma. When the material moves through the plasma, it may also be ionized by the Penning process, or by electron impact. The voltage of the plasma, referenced to the substrate, may be adjusted from ∼100 volts to ∼1000 volts. As the ionized plasma and deposit leave the chamber, they pass by a hot filament which provides electrons to create a charge neutral beam. Thus both insulating and conducting materials may be deposited on both insulating and conducting substrates. Another important property that can be controlled using the FTIG is the orientation of the crystal structure. Films of MgO and YSZ have been deposited in an oriented state. These cubic structures can be “forced” to a preferred 111, 220, 200, or random orientation, depending on the rate of deposit and gun voltage. A practical example of a solved problem using new modeling techniques and the Flow Through Ion Gun (FTIG) is described. The problem is to apply a platinum coating to aluminum which forms an oxide and makes film adhesion difficult with noble metals. The FTIG was used to pre-clean the inside surface, and subsequently deposit gold. Due to the aspect ratio of the cylinder, two cleaning and deposit cycles were required. Platinum distributions from an electron beam gun were used to compute a thickness uniformity on the inside of the cylinder. The uniformity was computed and measured to be ∼10% from end to end. The film microstructure was compared with thin film ballistic computations using SIMBAD, and the agreement found to be excellent.