ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R.W. Springer, B.J. Cameron, G.A. Reeves
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 449-455
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST97-A30800
Articles are hosted by Taylor and Francis Online.
A new ion beam technology has been developed which allows the specific control of a number of material parameters not previously or easily controlled during thin film fabrication. The new device is a modified Kaufman ion source. The principal differences are in the design of the grids, and the fact that the gun has an open bottom structure. An additional grid has been added on the bottom to contain the plasma and force the gun to be “unidirectional.” The gun operates by forming an electron driven plasma in the center, while allowing evaporated material to pass through this plasma. When the material moves through the plasma, it may also be ionized by the Penning process, or by electron impact. The voltage of the plasma, referenced to the substrate, may be adjusted from ∼100 volts to ∼1000 volts. As the ionized plasma and deposit leave the chamber, they pass by a hot filament which provides electrons to create a charge neutral beam. Thus both insulating and conducting materials may be deposited on both insulating and conducting substrates. Another important property that can be controlled using the FTIG is the orientation of the crystal structure. Films of MgO and YSZ have been deposited in an oriented state. These cubic structures can be “forced” to a preferred 111, 220, 200, or random orientation, depending on the rate of deposit and gun voltage. A practical example of a solved problem using new modeling techniques and the Flow Through Ion Gun (FTIG) is described. The problem is to apply a platinum coating to aluminum which forms an oxide and makes film adhesion difficult with noble metals. The FTIG was used to pre-clean the inside surface, and subsequently deposit gold. Due to the aspect ratio of the cylinder, two cleaning and deposit cycles were required. Platinum distributions from an electron beam gun were used to compute a thickness uniformity on the inside of the cylinder. The uniformity was computed and measured to be ∼10% from end to end. The film microstructure was compared with thin film ballistic computations using SIMBAD, and the agreement found to be excellent.