ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R.W. Springer, B.J. Cameron, G.A. Reeves
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 449-455
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST97-A30800
Articles are hosted by Taylor and Francis Online.
A new ion beam technology has been developed which allows the specific control of a number of material parameters not previously or easily controlled during thin film fabrication. The new device is a modified Kaufman ion source. The principal differences are in the design of the grids, and the fact that the gun has an open bottom structure. An additional grid has been added on the bottom to contain the plasma and force the gun to be “unidirectional.” The gun operates by forming an electron driven plasma in the center, while allowing evaporated material to pass through this plasma. When the material moves through the plasma, it may also be ionized by the Penning process, or by electron impact. The voltage of the plasma, referenced to the substrate, may be adjusted from ∼100 volts to ∼1000 volts. As the ionized plasma and deposit leave the chamber, they pass by a hot filament which provides electrons to create a charge neutral beam. Thus both insulating and conducting materials may be deposited on both insulating and conducting substrates. Another important property that can be controlled using the FTIG is the orientation of the crystal structure. Films of MgO and YSZ have been deposited in an oriented state. These cubic structures can be “forced” to a preferred 111, 220, 200, or random orientation, depending on the rate of deposit and gun voltage. A practical example of a solved problem using new modeling techniques and the Flow Through Ion Gun (FTIG) is described. The problem is to apply a platinum coating to aluminum which forms an oxide and makes film adhesion difficult with noble metals. The FTIG was used to pre-clean the inside surface, and subsequently deposit gold. Due to the aspect ratio of the cylinder, two cleaning and deposit cycles were required. Platinum distributions from an electron beam gun were used to compute a thickness uniformity on the inside of the cylinder. The uniformity was computed and measured to be ∼10% from end to end. The film microstructure was compared with thin film ballistic computations using SIMBAD, and the agreement found to be excellent.