ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. McEachern, C. Alford, R. Cook, D. Makowiecki, R. Wallace
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 435-441
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST97-A30798
Articles are hosted by Taylor and Francis Online.
We have performed a series of preliminary experiments to determine whether sputter deposition of doped Be is a practical route to producing NIF target capsules with Be ablators. Films ranging in thickness from 7 to ∼120 µm have been deposited on spherical polymer mandrels using a bounce pan to ensure uniform coating. With no voltage bias applied to the pan, relatively porous coatings were formed that were highly permeable to hydrogen. The surface finish of these films ranged from ∼250 nm rms for 13-µm-thick films to a minimum of ∼75 nm rms for an 80-µm-thick film. Application of a voltage bias was found to significantly modify the film morphology. At a bias of 120 V, 7-µm-thick films with a dense, fine-grained microstructure were produced. These capsules had a reflective surface with a 50 nm rms roughness. Finally, to demonstrate the ability to produce a graded dopant profile, a coating was produced in which the concentration of added Cu was varied from 2.5 atom % at the beginning to zero after 40 µm of deposition.