ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
B.W. McQuillan, A. Nikroo, D.A. Steinman, F.H. Elsner, D.G. Czechowicz, M.L. Hoppe, M. Sixtus, W.J. Miller
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 381-384
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST31-381
Articles are hosted by Taylor and Francis Online.
An improved process for production of ICF Target Mandrels has been developed. Shells made from PAMS (poly-α-methylstyrene) are coated with GDP (glow discharge polymer). The PAMS is then removed by depolymerization and volatilization at 300°C, leaving a GDP mandrel. Compared to past polymer mandrels, this process yields GDP mandrels with significant improvements in wall thickness control, sphericity and concentricity, and the complete absence of vacuoles. The process is capable of making GDP shells with a wide size range (from 300 < o.d. < 2700 µm), and an independently controlled wall thickness (from 1 to 30 µm). The GDP can be doped with a variety of elements.