ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Francesco Ghezzi, Walter T. Shmayda, Giovanni Bonizzoni
Fusion Science and Technology | Volume 31 | Number 1 | January 1997 | Pages 75-105
Technical Paper | Tritium System | doi.org/10.13182/FST97-A30781
Articles are hosted by Taylor and Francis Online.
Tritium gas handling involves the production of tritiated water, which is 10000 times more hazardous than tritium gas. If tritium emission to the environment must be minimized, the need to process tritiated water and recover the chemically bound tritium appears clear. Facilities for processing tritiated water produced in fission reactors are already available, while facilities for a deuterium-tritium fusion machine are under development. However, these facilities are intended for large-scale applications and are neither practical nor economical for small-scale applications. HTO vapor reduction to HT over a hot metal getter other than uranium offers a simple, safe, and economical solution. A high alloy capacity and conversion rate combined with a low tritium residual inventory in the exhausted alloy make this method attractive. An experimental investigation of the efficiency of reducing HTO by a Zr-Fe-Mn alloy is presented. The results, obtained by three independent diagnostics (stripper set, ionization chambers, and mass spectrometry), show that for gas residence times >1 s and alloy temperatures >400°C, a conversion efficiency exceeding 90% is achievable. Specific conversion rates >0.1 μmol/s·g−1 are observed during the alloy usage, while a capacity of the alloy, measured as an oxygen-to-alloy mole ratio, >2.6 has been measured.