ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Mitchell R. Swartz
Fusion Science and Technology | Volume 31 | Number 1 | January 1997 | Pages 63-74
Technical Paper | Nuclear Reactions in Solid | doi.org/10.13182/FST97-A30780
Articles are hosted by Taylor and Francis Online.
Electrochemical experiments, using nickel cathodes in light water solutions, were used to examine the enthalpy generated by electrically driving each electrode pair compared with ohmic controls contained within the same solution. For nickel wire cathodes, the peak power amplification (πNi) was in the range of 1.44±0.58. For spiral-wound nickel cathodes with platinum foil anodes, πNi was 2.27±1.02. By contrast, neither iron nor aluminum cathodes demonstrated excess heat. Driving these nickel samples beyond several volts, however, produced an exponential falloff of the power gain. This biphasic response to increasing input power may be consistent with the quasi-one-dimensional model of isotope loading and may contribute to the difficulty of reproducing these phenomena.