ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ernest D. Klema, Gerald W. Iseler
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 114-115
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST96-A30768
Articles are hosted by Taylor and Francis Online.
Three sets of experiments were conducted to investigate the radiation produced by spark discharge on (a) oxidized palladium samples, (b) oxidized palladium samples loaded with hydrogen, and (c) oxidized palladium samples loaded with deuterium. In the first set, no radiation was measured above background; in the second set, 24-keV X rays were observed, and in the third set, 17-keV X rays were produced. The intensities of the hydrogen X rays were measured over a period of 12 days. During this time, the daily fluctuations overshadowed any long-term variation that might be present. The deuterium X rays were followed over a period of 26 weeks. Again, the intensities fluctuated with time, obscuring the long-term trend; in one case, there was a 40% change from one day to the next.