ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
John D. Sheliak, James K. Hoffer, Larry R. Foreman, Evan R. Mapoles
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 83-94
Technical Paper | ICF Target | doi.org/10.13182/FST96-A30765
Articles are hosted by Taylor and Francis Online.
A high-resolution optical imaging system and custom-designed image analysis software are used to make surface roughness measurements for deuterium-tritium (D-T) solid layers, equilibrated inside a 2-mm-inside-diameter re-entrant copper cylinder. Several experiments are performed that yield D-T layer thicknesses of between 75 and 139 µm, with equilibration temperatures between 17.4 and 18.8 K. A 1024- × 1024-pixel charge-coupled-device imaging camera, coupled with a Maksutov-Cassegrain long-range microscope, produces a 2.5-µm (single-pixel) image resolution. The error function fitting of the image analysis data produces submicron resolution of the layer interior surface finish. The length scale for the cylinder inner bore is just over 6 mm, and the final layer surface roughness for this length ranges from 3- to 1.7-µm root-mean-square. The feasibility is being explored of using these highly uniform and smooth D-T solid layers inside future targets for inertial confinement fusion reactors to produce surface finishes that will meet target design requirements for the National Ignition Facility. Techniques for improving the D-T solid layer surface finish are examined, limitations of the current D-T cell configuration and fuel mix are discussed, and cell configurations for future experiments are described.