ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ronald W. Petzoldt, Ralph W. Moir
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 73-82
Technical Paper | ICF Target | doi.org/10.13182/FST96-A30764
Articles are hosted by Taylor and Francis Online.
The use of thin membranes to suspend an inertial fusion energy fuel capsule in a holder or hohlraum for injection into a reaction chamber is investigated. Also discussed is the stress that occurs in the fuel within a capsule during acceleration. To determine the maximum target acceleration, capsule displacement and membrane deformation angle are calculated for an axisymmetric geometry for a range of membrane strain and capsule size. Membranes must be thin (perhaps < 1 µm) to minimize their effect on capsule implosion symmetry. Typical target injection scenarios prefer accelerations in excess of 1000 m/s2. Acceleration in excess of 1600 m/s2 for a 2.4-mm-radius 30-mg capsule is possible with two 0.1-µm-thick membranes. Added stress from vibrations could cause a factor of 2 decrease in the allowed acceleration unless the acceleration profile is modified to mitigate this effect. However, if the acceleration is gradually increased and then decreased, over a few membrane oscillation periods (i.e., a few milliseconds), the membrane stress due to oscillation overshoot and the final capsule oscillation amplitude is minimal. Compared with a single membrane, a dual membrane geometry allows several times greater acceleration with reduced capsule displacement.