ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kei-Ichiro Shibata, Koichi Maki, Michio Otsuka, Takashi Inoue
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 50-62
Technical Paper | Shielding | doi.org/10.13182/FST96-A30762
Articles are hosted by Taylor and Francis Online.
As applied to the common design of the neutral beam injection (NBI) system in the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity, a design is proposed and examined that reduces the equivalent dose rate of the NBI system in order to enable access to the outside of the injector. Modifying the current system is necessary because the equivalent dose rate in the NBI room after reactor shutdown is higher than the design limit for radiation workers. The NBI maintenance concept is based on full-remote maintenance. There are, however, some problems that must be solved before full-remote maintenance could be realized—such as connection and disconnection of the electric power cables and complicated coolant pipes, and location of the maintenance equipment—this concept solves the aforementioned problem by enabling worker accessibility to the outside of the injector. The following design points are suggested to reduce the equivalent dose rate. The vacuum vessel should be composed of aluminum to reduce the induced radioactivity. Polyethylene, which has high shielding ability for neutrons, should be installed between the vessel and magnetic shield located outside the vacuum vessel to reduce not only neutron flux coming to the magnetic shield but also gamma-ray flux, caused by in-vessel components, leaking to the NBI room. The equivalent dose rate in the NBI room 1 week after reactor shutdown can be reduced to 28 µSv/h by applying the foregoing measures. Thus, the prospect exists for realizing access to the outside of the injector.