ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kei-Ichiro Shibata, Koichi Maki, Michio Otsuka, Takashi Inoue
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 50-62
Technical Paper | Shielding | doi.org/10.13182/FST96-A30762
Articles are hosted by Taylor and Francis Online.
As applied to the common design of the neutral beam injection (NBI) system in the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity, a design is proposed and examined that reduces the equivalent dose rate of the NBI system in order to enable access to the outside of the injector. Modifying the current system is necessary because the equivalent dose rate in the NBI room after reactor shutdown is higher than the design limit for radiation workers. The NBI maintenance concept is based on full-remote maintenance. There are, however, some problems that must be solved before full-remote maintenance could be realized—such as connection and disconnection of the electric power cables and complicated coolant pipes, and location of the maintenance equipment—this concept solves the aforementioned problem by enabling worker accessibility to the outside of the injector. The following design points are suggested to reduce the equivalent dose rate. The vacuum vessel should be composed of aluminum to reduce the induced radioactivity. Polyethylene, which has high shielding ability for neutrons, should be installed between the vessel and magnetic shield located outside the vacuum vessel to reduce not only neutron flux coming to the magnetic shield but also gamma-ray flux, caused by in-vessel components, leaking to the NBI room. The equivalent dose rate in the NBI room 1 week after reactor shutdown can be reduced to 28 µSv/h by applying the foregoing measures. Thus, the prospect exists for realizing access to the outside of the injector.