ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ryuji Yoshino, James K. Koga, Tatsuoki Takeda
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 237-250
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST96-A30753
Articles are hosted by Taylor and Francis Online.
A high toroidal eddy current induced in a vacuum vessel during plasma-current quench, Ip quench, results in errors in determining the vertical position of the plasma-current center, ZJ, calculated from standard linear regression sensor algorithms. These deviations result in a vertical displacement event (VDE) that must be avoided because of the expected severe damage on the first wall in tokamak fusion reactors like the International Thermonuclear Experimental Reactor (ITER). On the other hand, high ZJ calculation accuracy must be maintained at steady state to obtain reasonable plasma performance. Thus, real-time sensor algorithms for the calculation of ZJ applicable to the two cases of steady state and slow Ip quench are investigated. When a statistical method is applied to the ZJ calculation, its deviation from the actual ZJ cannot be completely reduced at the same time for both cases. On the contrary, a neural network demonstrates high accuracy in the calculation of ZJ for both cases, which enables real-time feedback control of ZJ during slow Ip quench, avoids VDE, and keeps reasonable plasma performance during steady state.