ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Raffaele Albanese, Enzo Coccorese, Otto Gruber, Raffaele Martone, Patrick McCarthy, Francesco Carlo Morabito
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 219-236
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST96-A30752
Articles are hosted by Taylor and Francis Online.
Real-time control of the plasma shape in the International Thermonuclear Experimental Reactor (ITER) calls for a fast and accurate identification of the equilibrium starting from magnetic measurements. The technique proposed for ITER interpolates the actual equilibrium within a previously generated dataset where each parameter is given a sufficiently wide range of variation. The properties of the artificial neural networks (ANNs) are shown to be well suited for this task. The satisfactory comparison with the functional parameterization, which is currently adopted for the feedback control in ASDEX-Upgrade, makes the proposed technique well linked to the experience available in current experiments. The ANN technique also provides an algorithm for the selection of the number and location of the magnetic sensors, which is an important issue for the ITER design. A preliminary analysis of the effects of the eddy currents flowing in the structure is also included. Numerical results presented refer to the so-called TAC-4 ITER geometry; extrapolation to update geometries with a close poloidal field concept is straightforward.