ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Gerasimos Tinios, Steve F. Horne, Ian H. Hutchinson, Stephen M. Wolfe
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 201-218
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Experimental Device | doi.org/10.13182/FST96-A30751
Articles are hosted by Taylor and Francis Online.
Linear control models are tested against experimental data from the Alcator C-Mod tokamak. A nonrigid, approximately flux-conserving, perturbed equilibrium plasma response model is used, together with a detailed toroidally symmetric model of the conducting vacuum vessel and the supporting superstructure, and experimentally determined power supply responses. Experiments are conducted with vertically unstable plasmas where the feedback is turned off and the plasma response is observed in an open-loop configuration. The agreement between theory and experiment is found to be very satisfactory, proving that the perturbed equilibrium plasma response model and a toroidally symmetric electromagnetic model of the vacuum vessel and the structure can be trusted for the purposes of calculations for control law design. The closed-loop behavior is also examined by injecting step perturbations into the desired vertical position of the plasma. The control hardware introduces nonlinearities that make it difficult to explain observed behavior with linear theory. Nonlinear simulation of the time evolution of the closed-loop experiments is able to account for the discrepancies between linear theory and experiment. Satisfactory agreement is then obtained between the model including the full multiple input/multiple output control system and the experimental observations.