ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Raffaele Albanese, Giuseppe Ambrosino, Enzo Coccorese, Francesco Carlo Morabito, Alfredo Pironti, Guglielmo Rubinacci, Stefano Scala
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 167-183
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST96-A30749
Articles are hosted by Taylor and Francis Online.
A linear model for feedback control of the plasma position and shape in the International Thermonuclear Experimental Reactor (ITER) is discussed. A model of the poloidal field (PF) system and of the disturbances is first derived. The main task of the control system is to avoid any contact of the hot plasma with the wall during the long duration of the burn phase. For this purpose, the control variables are specified as six gaps between the plasma separatrix and the first wall, including divertor channels. The structure model includes PF coils, vacuum vessel, first wall, backplate, and divertor fins, and it refers to the TAC-4 outline design ITER geometry. A multivariable controller is designed using the optimal linear quadratic approach. The simulation of the closed-loop system shows how the plasma shape is recovered: Step gap variations of 15 cm and poloidal beta drops of 0.2 are considered as disturbances. The performance parameters are voltages and currents in the PF coils and gap recovery time; voltage saturation of the actuators is also taken into account.