ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ian H. Hutchinson, Steve F. Horne, Gerasimos Tinios, Stephen M. Wolfe, Robert S. Granetz
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 137-150
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST96-A30746
Articles are hosted by Taylor and Francis Online.
A general approach to plasma shape control and its application to the Alcator C-Mod tokamak are described. The method is linear in the magnetic measurements but is entirely algorithmic, requiring no fitting of databases. Estimators of the shape parameters are based on a complete vacuum reconstruction of the flux, so that control points can be defined anywhere within the reconstructed region. The conversion of flux differences into flux-surface distances and the calculation of appropriate coil currents for controlling each parameter require a specific reference equilibrium. However, the control is very insensitive to the choice of reference equilibrium provided that the shape parameters are chosen appropriately. Control current combinations that are orthogonal, in the sense of changing one parameter and not the others, are obtained. Experiments with these estimators and controllers show them to be accurate and robust over a wide range of plasma shapes.