ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ian H. Hutchinson, Steve F. Horne, Gerasimos Tinios, Stephen M. Wolfe, Robert S. Granetz
Fusion Science and Technology | Volume 30 | Number 2 | November 1996 | Pages 137-150
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST96-A30746
Articles are hosted by Taylor and Francis Online.
A general approach to plasma shape control and its application to the Alcator C-Mod tokamak are described. The method is linear in the magnetic measurements but is entirely algorithmic, requiring no fitting of databases. Estimators of the shape parameters are based on a complete vacuum reconstruction of the flux, so that control points can be defined anywhere within the reconstructed region. The conversion of flux differences into flux-surface distances and the calculation of appropriate coil currents for controlling each parameter require a specific reference equilibrium. However, the control is very insensitive to the choice of reference equilibrium provided that the shape parameters are chosen appropriately. Control current combinations that are orthogonal, in the sense of changing one parameter and not the others, are obtained. Experiments with these estimators and controllers show them to be accurate and robust over a wide range of plasma shapes.