ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. Paul Drake, James H. Hammer, Charles W. Hartman, L. John Perkins, Dmitri D. Ryutov
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 310-325
Technical Paper | Plasma Engineering | doi.org/10.13182/FST96-A30734
Articles are hosted by Taylor and Francis Online.
Adiabatic compression of a preformed closed field line configuration by an imploding liner is considered. Three configurations are discussed: the field-reversed configuration, the spheromak, and the Z-pinch. It is shown that by employing a two-dimensional compression, one can reach a breakeven condition with an energy input into the plasma as low as 100 kJ. Typical initial dimensions of the liner are length, 5 to 6 cm; radius, ∼1 cm; and wall thickness, ∼0.01 cm. Liner mass is in the range of a few grams. It is assumed that the initial plasma beta is of the order of unity; in this case, the final beta is much greater than 1, and the plasma is in a wall confinement regime. Typical plasma parameters for the final state (for the linear compression ratio equal to 10) are density, 1021 cm−3; temperature, 10 keV; and magnetic field, 107 G. A brief discussion of various phenomena affecting the wall confinement is presented (magnetic field diffusion, radiative losses, and impurity penetration); the conclusion is drawn that the heat losses to the walls are modest and are not a factor that limits plasma enhancement Q. It is shown that at least for relatively thin liners, whose compressibility can be neglected, what limits Q is a relatively short liner dwell time near the maximum compression point. The scaling law for the Q versus the input parameters of the system is derived, which shows a relatively weak dependence of Q on the input energy. Possible ways for increasing the dwell time are discussed. Reactor potentialities of the system are briefly described. It is emphasized that the possibility of performing crucial experiments on small- to medium-scale experimental devices may considerably shorten the development path for the system under consideration. Some nonfusion applications of the system described are mentioned. Among them are burning and transmutation of long-lived fusion products, medical isotope production, a pulsed source of hard X rays, and fusion neutrons.