ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Miguel Algueró, José Francisco Fernández, Fermín Cuevas, Carlos Sánchez
Fusion Science and Technology | Volume 29 | Number 3 | May 1996 | Pages 390-397
Technical Paper | Nuclear Reactions in Solid | doi.org/10.13182/FST96-A30726
Articles are hosted by Taylor and Francis Online.
An explanation is proposed for the time dependence of the neutron emission transient observed after interrupting the electrolysis in Fleischmann-Pons-type experiments with titanium cathodes. It is suggested that the time structure of the neutron emission is related to a reduction of active volume (i.e., the volume with a loading ratio higher than the critical value necessary for cold fusion to take place) in the deuterated titanium. This reduction occurs during the postelectrolysis time due to deuterium transport from the TiDx delta-phase layer to the undeuterated bulk of the cathode. Calculations of the active volume decrease are done by using the Wagner model.