ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Kenji Konashi, Hideo Kayano, Makoto Teshigawara
Fusion Science and Technology | Volume 29 | Number 3 | May 1996 | Pages 379-384
Technical Paper | Nuclear Reactions in Solid | doi.org/10.13182/FST96-A30724
Articles are hosted by Taylor and Francis Online.
When energetic heavy ions irradiate a deuteride titanium target, a number of recoil deuterium atoms are produced in the solid. The recoil deuterium atoms cause deuteron-deuteron (d-d) fusion reactions in solids. The probability of the d-d fusion reaction has been calculated for the primary colliding deuterium atoms, as well as the collision cascade deuterium atoms. Based on calculated results, an experiment using a heavy-ion accelerator was proposed to study d-d fusion in solids. The enhancement effect on d-d fusion in solids is particularly interesting. The experimental parameters were as follows: The energy of the ion beam for the d-d fusion experiment was in the range from several to several tens of mega-electron-volts for an experiment with an iodine ion beam and a titanium target. The enhancement effect in the solid is evaluated by comparing the experimental results with the present calculated results. The existence of the enhancement at low energies can be confirmed by measuring the depth profile of the fusion probabilities. Reported experimental data have been analyzed by the calculated results. The enhancement has not been found in the data.