ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kenji Konashi, Hideo Kayano, Makoto Teshigawara
Fusion Science and Technology | Volume 29 | Number 3 | May 1996 | Pages 379-384
Technical Paper | Nuclear Reactions in Solid | doi.org/10.13182/FST96-A30724
Articles are hosted by Taylor and Francis Online.
When energetic heavy ions irradiate a deuteride titanium target, a number of recoil deuterium atoms are produced in the solid. The recoil deuterium atoms cause deuteron-deuteron (d-d) fusion reactions in solids. The probability of the d-d fusion reaction has been calculated for the primary colliding deuterium atoms, as well as the collision cascade deuterium atoms. Based on calculated results, an experiment using a heavy-ion accelerator was proposed to study d-d fusion in solids. The enhancement effect on d-d fusion in solids is particularly interesting. The experimental parameters were as follows: The energy of the ion beam for the d-d fusion experiment was in the range from several to several tens of mega-electron-volts for an experiment with an iodine ion beam and a titanium target. The enhancement effect in the solid is evaluated by comparing the experimental results with the present calculated results. The existence of the enhancement at low energies can be confirmed by measuring the depth profile of the fusion probabilities. Reported experimental data have been analyzed by the calculated results. The enhancement has not been found in the data.