ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D. R. Juliano, D. N. Ruzic, D. Hill, K. A. Werley
Fusion Science and Technology | Volume 29 | Number 2 | March 1996 | Pages 269-276
Technical Paper | Divertor System | doi.org/10.13182/FST96-A30713
Articles are hosted by Taylor and Francis Online.
Sufficient neutral atom and molecular throughput is essential for the steady-state operation of the proposed Tokamak Physics Experiment tokamak. To predict the throughput, the B2 edge-plasma fluid code and the DEGAS Monte Carlo neutral transport code were coupled globally. For the day 1 low-power (17.5-MW) operation condition, the recycling coefficient for both codes matched at 0.985, implying that for every 1000 ions striking the divertor plate, 15 are ultimately removed down the pump duct. The neutral molecular density was 2.52 ± 0.15 × 1019/m3, giving a throughput of 92.6 ±5.6 Torr · ℓ/s. Varying the scrape-off length for the plasma extending into the gap between the baffle and the plate from 0 to 2 cm decreased the throughput by a factor of >2. Moving the strike point away from the gap at first increases the throughput by lessening the pumping efficiency of the plasma in the gap. As the plasma is moved even farther away, the throughput drops due to a lack of source term for neutrals entering the pumped region. Illustrating the importance of moving the source term, moving the strike point away from the gap but retaining the original plasma in the gap lowers the throughput by a factor of 10. Altering the curvature of the baffle has little effect on the neutral solution.