ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
G. Manfredi, M. Shoucri, I. Shkarofsky, A. Ghizzo, P. Bertrand, E. Fijalkow, M. Feix, S. Karttunen, T. Pattikangas, R. Salomaa
Fusion Science and Technology | Volume 29 | Number 2 | March 1996 | Pages 244-260
Technical Paper | Plasma Heating System | doi.org/10.13182/FST96-A30711
Articles are hosted by Taylor and Francis Online.
A drift-kinetic Eulerian Vlasov code with fluid equations for the ions is used to study the collision-less diffusion of particles and current across a magnetic field for the case of an electron beam injected near the edge of a two-dimensional magnetized plasma slab. The case of a magnetic field tilted with respect to the beam direction at an angle of θ = 10 deg is considered. Test particles diagnostic techniques are used to study the evolution of the phase space at different locations across the plasma slab. We analyze the anomalous diffusion process triggered by the beam-plasma instability and induced in space across the magnetic field by the Kelvin-Helmholtz instability and the velocity space diffusion induced along the magnetic field due to the kinetic effects of the beam-plasma instability. Ir the present slab geometry it is found that the collision-less diffusion coefficients Dy and Dυ‖ describing respectively the anomalous diffusion in physical spaa and in velocity space, are related by the relation Dy = Dυ‖ tan2 θ/ω2ce. This relation, which links the electror dynamics in the x-y real space and in the y-υ‖ phase space, is verified accurately using the test particles diagnostic techniques. The Vlasov code associated with test particles techniques provides a powerful tool to study particle diffusion in space and in phase space, especially in the low-density regions of the distribution function.