ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. Manfredi, M. Shoucri, I. Shkarofsky, A. Ghizzo, P. Bertrand, E. Fijalkow, M. Feix, S. Karttunen, T. Pattikangas, R. Salomaa
Fusion Science and Technology | Volume 29 | Number 2 | March 1996 | Pages 244-260
Technical Paper | Plasma Heating System | doi.org/10.13182/FST96-A30711
Articles are hosted by Taylor and Francis Online.
A drift-kinetic Eulerian Vlasov code with fluid equations for the ions is used to study the collision-less diffusion of particles and current across a magnetic field for the case of an electron beam injected near the edge of a two-dimensional magnetized plasma slab. The case of a magnetic field tilted with respect to the beam direction at an angle of θ = 10 deg is considered. Test particles diagnostic techniques are used to study the evolution of the phase space at different locations across the plasma slab. We analyze the anomalous diffusion process triggered by the beam-plasma instability and induced in space across the magnetic field by the Kelvin-Helmholtz instability and the velocity space diffusion induced along the magnetic field due to the kinetic effects of the beam-plasma instability. Ir the present slab geometry it is found that the collision-less diffusion coefficients Dy and Dυ‖ describing respectively the anomalous diffusion in physical spaa and in velocity space, are related by the relation Dy = Dυ‖ tan2 θ/ω2ce. This relation, which links the electror dynamics in the x-y real space and in the y-υ‖ phase space, is verified accurately using the test particles diagnostic techniques. The Vlasov code associated with test particles techniques provides a powerful tool to study particle diffusion in space and in phase space, especially in the low-density regions of the distribution function.